作为一名专为他人授业解惑的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么应当如何写教案呢?以下是小编为大家整理的加法结合律教案,仅供参考,希望能够帮助到大家。
加法结合律和简便算法
教学目标
1、使学生理解、掌握加法结合律.
2、能够应用加法的交换律和结合律进行简便计算.
教学重点
对加法结合律的理解、掌握和应用.
教学难点
加法结合律的运用.
教学步骤
一、铺垫孕伏.
1、什么叫加法交换律?用字母如何表示?
2、根据运算定律在下面的()里填上适当的数.
43+67=()+()35+()=65+()
()+18=19+()a+100=()+()
3、下面各等式哪些贴合加法交换律?
270+380=390+26020+50+80=20+80+50
a+400=400+a140+60=60+140
谈话引入:以上,我们运用了加法的好处及交换律解决了一些问题,那么关于加法还有没有其他的规律性知识?这些知识又有什么用途呢?这节课我们继续学习这方面的.知识――加法结合律和简便运算.(板书课题)
二、探究新知.
(一)教学例3、观察下面每组的两个算式,它们有什么样的关系?
(12+13)+14○12+(13+14)
(320+150)+230○320+(150+230)
1、教师提问:(1)上面等式两边算式有什么相同点?有什么不同点?
相同点:都有三个加数,左右两边的三个数相同;
不同点:加的顺序不同.
(2)每组两个算式的结果怎样?用什么符号连接?每组算式说明什么?
2、归纳加法的结合律.
3、用字母表示加法结合律.
如果用字母a、b、c分别表示3个加数,怎样用字母表示加法结合律呢?
教师板书:(a+b)+c=a+(b+c)
等号左边(a+b)+c表示先把前两个数相加,再同第三个数相加.
等号右边a+(b+c)表示先把后两个数相加再用第一个数相加.
a、b、c表示的数是什么范围的数?
4、练习:根据运算定律在下面的□里填上适当的数.
(25+68)+32=25+(□+□)
130+(70+4)=(130+□)+□
(二)教学简便算法.
应用加法结合律我们能够改变一些数的运算顺序,但应用加法交换律更主要的一点是能够使一些计算简便.
1、例4计算480+325+75
教师提问:同学们想要计算480+325+75,怎样计算比较简便?为什么?应用了什么运算定律?(学生试算)
教师板书:
480+325+75
=480+(325+75)
=480+400
=880
2、例5计算325+480+75
教师提问:这道题怎样算比较简便?为什么?应用了什么运算定律?(群众订正)
325+480+75
=325+75+480
=(325+75)+480
=400+480
=880
教师提示:哪一步能够省略?
325+480+75
=325+75+480
=400+480
=880
3、比较例4、例5在应用运算定律方面的不同.
例4没有调换加数的位置,直接应用了加法结合律进行了简算;
例5要使325与75相加,则务必先应用加法交换律将75交换到480的前面,再应用加法结合律简算.
4、反馈练习:137+31+63,怎样计算比较简便?用了什么定律?
5、想一想,过去哪些计算应用了加法的结合律?
(在做口算加法时应用了加法结合律)
如:36+48
36+48=36+(40+8)=(36+40)+8=76+8=84
教师说明:根据加法结合律不仅仅能够做口算加法,还使一些计算简便.简算时要注意数字特点.
三、巩固发展.
1、根据运算定律在下面的□填上适当的数.
369+258+147=369+(□+147)
(23+47)+56=23+(□+□)
654+(97+a)=(654+□)+□
2、下面哪些等式贴合加法结合律?
a+(20+9)=(a+20)+9
15+(7+b)=(20+2)+b
10+20+30+40=10+(20+30)+40
3、下面各题怎样算简便就怎样算.
88+75+12
6+2+7+4+8
79+145+21
14+9+2+11+6
25+97+15+3
7+39+43+61+8+32
4、选取比较简便的方法填在括号里.
(1)399+154+201=()
①399+(154+201)②(399+201)+154
(2)374+268+126+432=()
①(374+126)+(268+432)②(374+126)+268+432
四、全课小结.
这天我们学习了哪些新知识?什么叫做加法结合律?与加法交换律有什么不同之处?
五、布置作业.
光明小学篮球队队员的身高分别是:160厘米、164厘米、158厘米、156厘米、162厘米.队员的平均身高是多少?
六、板书设计
加法结合律和简便算法
例3观察下面每组的两个算式,它们有什么样的关系?
例4计算480+325+75
480+325+75
480+(325+75)
=480+400
=880
例5计算325+480+75
325+480+75
=325+75+480
=(325+75)+480
=400+480
=880
教学目标:
1.理解和掌握加法结合律,并应用加法结合律使计算简便。
2.培养观察、归纳、概括的潜力。
教学重点:理解并掌握加法结合律。
教学难点:加法结合律的推导。
教学过程:
一、复习导入
20+34=()+()
36+()=64+()
A+700=+
二、新授
1.出示准备题:
37+26+63、37+(26+63)
59+38+732和59+(38+732)
讨论:比较两式题的异同。刚才的两个例子说明了什么?
2.上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。
(学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。
3.能证明猜想正确,还有我们身边的.一些生活实例。
请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?
三、小组展示
1.学生先汇报
A.口头列式:
(88+104)+96
88+(104+96)
B.分别说说先求什么,再求什么?
C.决定,得数会相同吗?(相同)
D.计算结果。得出(88+104)+96=88+(104+96)
2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?
3.用字母表示加法结合律。
(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)
(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?
三、练习
1.下面哪些等式贴合加法结合律?
a+(20+9)=(a+20)+9
15+(7+b)=(20+2)+b
(10+20)+30+40=10+(20+30)+40
2.简便计算。
273+352+648
64+36+81+19
3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)
板书设计:
加法结合律
37+26+63=37+(26+63)
59+38+732=59+(38+732)
(88+104)+96
88+(104+96)
加法结合律:(a+b)+c=a+(b+c)
教学内容:教科书第14-15页的例4一例5,练习三的第5-10题。
教学目的:使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。
教学重点:使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算。
教学难点:培养学生分析推理的能力。
教学过程:
一、复习旧知:
1.抿据运算定律在下面的()里添上适当的数。
35+()=65+()
2.四年级一班有48人,二班有50人,两个班一共有多少人?
计算完后,让学生应用加法的意义说明为什么用加法计算。
二、学习新知
1.学习例3。
给上面的复习题3加上一个已知条件“三班有49人”,问题改为“三个班一共有多少人?”
让学生读题后,指名说出已知条件和问题,并用用线段图表示出数量关系。
我们在前面研究过,求两个数的和一共是多少,知道用加法算。
小组讨论:现在求三个班人数的和一共是多少可以怎样算呢?想一想,有没有不同的解法呢?
汇报:第一种解法:先把一班和二班的人数加起来,求出它们的和,再加上三班的人数。引导学生说出综合算式:(48+50+49,强调说明,为了表明先算一班与二班人数的和,可以在48和50的外面加上小括号。)
汇报:第二种解法:先把二班和三班的人数加起来,求出它们的和,再加上1班的人数。
学生独立列出综合算式:48+(50+49)。强调说明,为了表示先算二班与三班个数的和,要在50和49的外面加上小括号。提问:“这两种解法的结果怎样?”“用什么符号连接这两个算式?”
(板书:(48+50)十49=48+(50+49))
“有什么不同点?”(加的顺序不同,等号左边先把48和50相加,再同49相加;等号右边先把50和49相加,再同48相加。)
学生回答后,共同归纳整理:48、50和49这三个数相加,先把48和50相加,再同49相加;或者先把50和49相加,再同48相加,它们的得数一样,也就是和不变。
2.再出两组算式,引导学生比较,加以概括。
(1)教师:我们再观察一组算式,看一看它们有什么样的关系。
板书:(12+13)+14○12+(13+14)
先让学生算一算,看两个算式的结果怎样,用什么符号连接。这组算式说明了什么。
(2)再观察一组算式,看一看它们有什么样的'关系。
(320+150)+230○320+(150+230)
让学生说一说这组算式说明了什么?
3.比较三个等式,突出下面三点:
(1)这三个等式中,左右两边各有几个加数?(三个加数),每个等式中左右两边的加数都一样吗?
(2)这三个等式中,等号左边三个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)
(3)再看右边三个算式有什么共同点?(加的顺序相同,都是先把后两个数相加,再同第一个数相加。)
提问:“每个等式中等号左边的算式和等号右边的算式,加的顺序相同吗?但它们的和怎么样?”
“谁能把我们发现的规律完整地说一说?”
让几个学生试说后,教师完整地叙述一遍,说明这一规律叫做加法结合律。再看一看教科书第14页的结语。
4.用字母表示加法结合律。
“如果用字母a、b、c分别表示三个加数,怎样表示加法的结合律呢?”学生回答后,板书:
(a+b)+c=a+(b+c)
5.练习。
完成第15页“做一做”上面的题目。让学生把数填在书上,订正时,让学生说一说根据哪个运算定律填写的。
6.加法结合律的应用。
(1)学习例4。
出示:480+325+75
让学生想-想,怎样计算比较简便?要应用什么运算定律?共同讨论。
教师板书,480+325+75
480+(325+75);计算时方框里的这一步可以省略不写。
(2)学习例5。
出示;325+480+75
让学生想一想,怎样计算比较简便?要应用什么运算定律?学生试算后,讨论订正。
(3)比较例4、例5。
让学生讨论后说一说例3、例4在应用运算定律方面有什么不同?
(例3没有调换加数的位置,只应用加法结合律,先把后两个数相加就可以使计算简便。而例4,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加才能使计算简便。
(4)做第15页下面的“做一做”。
让学生自己做,订正时,让学生说出是怎样应用运算定律的。
三、课堂练习
1.做练习三的第5、6、7题,做完后共同订正。
(1)第5题,要注意让学生弄清根据哪个运算定律来填数。
(2)第6题,要注意a+(20+9)=(口十20)+9这道题,看学生是否能判断出,这道题虽然有字母又有数目,但它仍符合加法结合律。
(3)第7题,要求学生选两道题说一说是怎样应用加法结合律的。如37+8,先把37分成30+7,应用结合律可以先把7和8相加,再和30相加。
四、布置作业
练习三的第8、9、10题。
板书设计:例4:480+325+75例5:325+480+75
=480+(325+75)=(325+75)+480
=880=880
教学设想:本课知识比较容易理解,但运用起来有些难度,特别是学习能力比较差的学生,所以采用了讲授与自学相结合的方法,达到了即培养了学生的能力,又照顾差生的教学目的。
第一课时:
教学内容:P28例1(加法交换律)P29/例2(加法结合律)
教学目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
引导学生观察主题图
教师根据学生提出的问题板书。
二、新授
练习本上用自己的方法列出综合算式,解答黑板上问题。
教师巡视,找出课堂上需要的答案,找学生板演。
学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
试着再举出几个这样的例子。
根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?
学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。
教师根据学生的`小结,板书。
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a
学生用多种形式表示。
符号表示:△+☆=☆+△
引导学生观察第二组算式,总结出:
(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。
学生继续观察几组算式。
出示:
(69+172)+28
69+(172+28)
155+(145+207)
(155+145)+207
通过上面的几组算式,你们发现了什么?
学生总结观察到的规律。
教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
学生用自己喜欢的方式表示加法结合律。
符号表示:(△+☆)+○=△+(☆+○)
教师板书:
(a+b)+c=a+(b+c)
学生根据这两个运算定律,举一些生活中的例子。
三、巩固练习
P28/做一做
P31/4、1
四、小结
学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
五、作业:P31/3
板书设计:
加法的运算定律
(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?
40+56=96(千米)56+40=96(千米)88+104+96104+96+88
=192+96=200+88
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
┆(学生举例)(69+172)+28=69+(172+28)
两个加数交换位置,和不变。155+(145+207)=(155+145)+207
这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,
和不变。这叫做加法结合律。
a+b=b+a(a+b)+c=a+(b+c)
教材分析:
本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:配套课件。
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的一共有多少人?
参加活动的.一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?
教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。
9、练习:
完成想想做做第一题前面两小题。
设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。
4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(28+17)+23=28+(17+23)
5、电脑出示:下面的Ο里能填上等号吗?
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第1题的后面两个小题。
设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
四、巩固练习。
1、完成“想想做做”第2题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、完成“想想做做”第3题第1行。
3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。
4、完成“想想做做”第4题。
使学生初步感受应用加法运算律可以使计算简便。
设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。
板书设计: 运算律
加法交换律 加法结合律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
(学生说的算式) =68(人) =68(人)
(28+17)+23=28+(17+23)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)
设计说明
本节课在教学设计上主要突出以下几点:
1.加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后加法的第二个运算定律。学好加法结合律,对于加法的简便计算,提高运算速度和准确程度都有很大的帮助。创设连贯的生活情境,让学生体会到数学知识来源于生活。
在生活情境下学习知识,可以使学生感受到数学知识在生活中应用的广泛性。因此,加法结合律的`教学同样在李叔叔骑车旅行的情境下进行,让学生根据笔记本上记录的三天行程的数据提出要解决的现实问题。在这一过程中,使学生充分感受到数学知识来源于生活。
2.调动已有的学习经验,自主发现规律。
因为本内容的学习是在刚刚学习了加法交换律的基础上进行的,所以引导学生迁移运算定律学习经验是学好本内容的基本策略。教学中,利用情境引导学生理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并请学生根据此等式的特点,举一些例子,对此类等式的特点展开讨论,然后初步小结得到加法结合律的内容。
课前准备
教师准备多媒体课件课堂活动卡
学生准备学情检测卡
教学过程
⊙复习导入
1.根据加法交换律填空。
20+34=()+20
36+()=64+()
a+700=()+()
2.下面的算式哪些符合加法交换律?
(1)230+270=300+200
(2)60+80+40=60+40+80
(3)48+d=d+48
师:上节课我们学习了加法交换律,知道了两个数相加,交换加数的位置,和不变。那么加法还有没有其他运算定律呢?这些运算定律又有什么用途呢?这节课我们就来学习加法结合律。(板书课题:加法结合律)
设计意图:通过复习加法交换律,唤起学生对已有知识的回顾,同时激发学生探究加法的另一个重要运算定律
教学目标:
1、理解和掌握加法结合律,并应用加法结合律使计算简便。
2、培养观察、归纳、概括的能力。
教学重点:
理解并掌握加法结合律。
教学难点:
加法结合律的推导。
教学过程:
一、复习导入
20+34=()+()36+()=64+()A +700=()+()
二、新授
1、出示准备题:
37+26+63、37+(26+63)59+38+732和59+(38+732)
讨论:比较两式题的异同。刚才的两个例子说明了什么?
2、上述两题符合猜想,可能是偶然。请同学们自己来找一找符合猜想的式题。(学生自由举例,小组交流结果。汇报结果,找到许多式题符合猜想。)
3、能证明猜想正确,还有我们身边的.一些生活实例。
请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?
三、小组展示1。学生先汇报
A、口头列式:(88+104)+96 88+(104+96)
B、分别说说先求什么,再求什么?
C、判断,得数会相同吗?(相同)
D、计算结果。得出(88+104)+96=88+(104+96)
2、提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?
3、用字母表示加法结合律。
(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)
(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?
三、练习
1、下面哪些等式符合加法结合律?
a+(20+9)=(a+20)+9 15+(7+b)=(20+2)+b(10+20)+30+40=10+(20+30)+40
2、简便计算。273+352+648 64+36+81+19
3、五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)
板书设计:
加法结合律
37+26+63=37+(26+63)59+38+732=59+(38+732)(88+104)+96 88+(104+96)加法结合律:(a+b)+c=a+(b+c)
教学目标
(一)使学生理解并掌握加法结合律。
(二)使学生理解和掌握加法交换律与加法结合律的异、同点,及其特点。
(三)能正确、灵活地应用加法交换律和加法结合律进行简便运算。
(四)培养学生分析推理的能力。
教学重点和难点
使学生理解并掌握加法结合律,能正确、灵活地应用加法运算定律使计算简便,这是教学的重点,引导学生通过讨论,计算从而自己发现并总结出加法结合律的过程是学习的难点。
教学过程设计
(一)复习准备
1.口答。
(1)根据运算定律在下面的( )里填上适当的数。
46+( )=75+( ) ( )+38=( )+59
24+19=( )+( ) a+67=( )+( )
要求学生说出根据什么运算定律填数。
(2)根据每组第一个算式直接说出第二个算式的结果。
632+85=717 304+215=519
85+632=( ) 215+304=( )
2.板演:
四年级一班有48人,二班有50人,四年级一共有多少人?
3.在多位数加法竖式计算中,已经学过一种简便算法,如
引导学生回忆说明,从个位加起,先把每个数位上可以凑成“10”的`两个数加起来,再和另一个数相加。
(二)学习新课
1.新课引入。
教师指出:刚才那种计算方法实际上就是应用加法结合律。那么什么叫做加法结合律呢?这就是我们今天要研究的课题。(板书课题:加法结合律)
教师指出,如果把刚才板演题再加上一个条件“三班有49人”,就是我们今天要研究的例2.出示例2.
四年级一班有48人,二班有50人,三班有49人。四年级一共有多少人?
学生读题后,明确已知条件和问题、师生共同画出线段图。
让学生用两种方法,独立做在本上。
教学内容:加法结合律和简便算法--教材第49-50页例3-5,做一做题目及练习十一3-5题。
教学目的:使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。
教学过程:
一、复习
1.根据运算定律在下面的()里填上适当的数。
35+()=65+()()+147=()+274
56+74=()+()a+200=()+()
订正时,让学生说出是根据什么运算定律填数的。
2.下面各等式哪些符合加法交换律?
270+380=390+26030+50+70=30+70+50
a+800=800+a□+△+○=○+□+△
3.四年级一班有48人,二班有50人,两个班一共有多少人?
计算完后,让学生应用加法的意义说明为什么用加法计算。
二、新课
1.教学例3。
(1)教师:我们观察下面一组算式,看一看它们有什么样的关系。
板书:(12+13)+14○12+(13+14)
先让学生算一算,看两个算式的结果怎样,用什么符号连接。这组算式说明了什么。
学生回答后,教师归纳整理:12、13和14这三个数相加,先把12和13相加,再同14相加;或者先把13和14相加,再同12相加,它们的和不变。
(2)再观察一组算式,看一看它们有什么样的关系。
(320+150)+230○320+(150+230)
让学生说一说这组算式说明了什么?
2.比较两个等式,突出下面三点:
(1)这两个等式中,左右两边各有几个加数?(三个加数。)每个等式中左右两边的加数都一样吗?
(2)这两个等式中,等号左边两个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)
(3)再看右边两个算式有什么共同点?(加的顺序相同,都是先把后两个数相加,再同第一个数相加。)
提问:
每个等式中等号左边的`算式和等号右边的算式,加的顺序相同吗?但它们的和怎么样?
谁能把我们发现的规律完整地说一说?
让几个学生试说后,教师完整地叙述一遍,说明这一规律叫做加法结合律。再看一看教科书第49页的结语。
3.用字母表示加法结合律。
提问:
如果用字母a、b、c分别表示三个加数,怎样表示加法的结合律呢?(学生回答后,板书:(a+b)+c=a+(b+c)
等号左边(a+b)+c表示什么意思?(先把前两个数相加,再同第三个数相加。)
等号右边a+(b+c)表示什么意思?(先把后两个数相加,再同第一个数相加。)
4.练习。
完成第50页上面的做一做的题目。让学生把数填在书上,订正时,让学生说一说根据哪个运算定律填写的。
5.加法结合律的应用。
(1)教学例4。
出示:计算480+325+75
让学生想一想,怎样计算比较简便?要应用什么运算定律?共同讨论。
教师板书:
480+325+75
=480+400
=880
(2)教学例5。
出示:计算325+480+75
让学生想一想,怎样计算比较简便?要应用什么运算定律?
学生试算后,讨论订正。
教师板书:
325+480+75
=400+480
=880
(3)比较例4、例5。
让学生说一说例4、例5在应用运算定律方面有什么不同?
教师小结:例4没有调换加数的位置,只应用加法结合律,先把后两个数相加就可以使计算简便。而例5,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加才能使计算简便。
然后启发学生说出例5也可以应用加法交换律把325调到480的后面,再应用加法结合律把325和75相加,使计算简便。
提问:
想一想,过去我们学过的哪些计算中应用了加法结合律?
如果学生想不出,再指出:
口算加法应用了加法结合律。如36+48怎么想?
36+48
=36+(40+8)
=(36+40)+8
=76+8
=84
应用加法结合律不仅可以做口算加法,还能使一些计算简便。
三、课堂练习
做第50页下面的做一做。
让学生自己做,订正时,让学生说出是怎样应用运算定律的。
四、布置作业
做练习十一的第3-5题,做完后共同订正。
(1)第3题,先说说可以应用什么运算定律使计算简便,再用简便方法计算。
(2)第4题,口算,并说出你是怎样应用加法结合律进行口算的。如37+8,先把37分成30+7,应用结合律可以先把7和8相加,再和30相加。
(3)第5题,要求学生说出是根据加法的什么运算定律填空的。
教学内容:
北师大版小学数学四年级上册第52—53页的内容。
教学目标:
1、经历加法结合律的探索过程,会用字母表示加法结合律,培养发现问题和提出问题的能力,积累数学活动经验。
2、能够运用加法交换律和结合律,对一些算式进行简便运算,体会计算方法的多样化,发展数感。
教学重点:
能够运用加法交换律和结合律,对一些算式进行简便运算。
教学难点:
经历加法结合律的探索过程,会用字母表示加法结合律,培养发现问题和提出问题的能力。
教材分析:
本节课的内容是加法结合律以及运用加法结合律进行简便运算教科书在内容的编排和问题串的设计上与交换律的呈现模式相同:
第一个问题让学生观察算式、发现问题,并尝试提出问题;
第二个问题让学生举出事例解释所发现的运算律;
第三个问题让学生用字母表示所现的加法结合律;
第四个问题根据运算律进行简便、合理的运算。
教学方法:
本节课主要采用观察法、举例法、归纳法等教学方法,动手实践、自主探索、合作交流是学生重要的学习方式。
教学过程:
一、创设情境,导入新课
师:你们平时玩过“找不同”的游戏吗?这节课我们就来玩一玩,比一比谁的眼力好?出示PPT,请你们仔细看这两幅图,哪儿不同?
设计意图:
以玩游戏的形式导入新课,可以激发学生学习数学的兴趣,同时很自然地将学生的注意力转移到课堂上来。)
二、合作学习,探究新知:
师:同学们的眼力都还不错,再来看看这两组算式。每组中的两个算式有什么相同和不同的地方?为什么可以把两个算式用等号连接起来呢?
师:你们还能照样子另外写出一组吗?学生写完算式后,交给小组长检查,然后指名其中的小组长进行汇报交流仿写的算式。板书具有代表性的例子。
请观察这几组算式,谁来说一说你发现了什么?
(三个数相加,先把前面两个数相加,再加上第三个数所得的和,与先把后面两个数相再加上第一个数的所得的和是相等的。)
三、自主质疑,展示分享:
师:请你们任意选择一组算式,用生活中的例子来解释一下你们的发现是否正确?看来,你们发现的规律在我们的生活中是客观存在的。具有这样规律的算式多不多?全部用数字来写,写得完吗?用什么来代替数字就能写完了?
请你们用字母a、b、c代表三个数,写出刚才发现的规律。
(a+b)+c=a+(b+c),这就是加法结合律。
在前面我们学习了加法交换律,想一想加法交换律与加法结合律有什么相同和不同的地方?
四、反馈练习,落实应用:
1、出示怎样计算简便?想一想,算一算。
57+288+43=
让学生独立计算,然后让学生说一说是怎样想的?
2、练一练:
第1题鼓励学生结合具体的客观存在,感受运算律现实生活的'密切联系。
第2题侧重让学生体会算式的等值变形。
第3题让学生独立完成,全班交流算法,提高运算能力。
第4题是对加法结合律的拓展应用,体会运算律的广泛性。
第5题不强求所有的学生掌握。
五、课堂小结:说一说,这节课你学会了什么?
板书设计:
加法结合律
学生说出的几组算式
(a+b)+c=a+(b+c)
教学反思:
本节课是在学生学习了加法交换律和乘法交换律之后,对运算规律进行再度探索,因此在设计本课教学时直接让学生计算教材呈现的式题,让学生根据前面的学习经验,自然得出结论,从而总结出加法结合律。教学中,教师注重使用诱导性的语言,激发学生的学习积极性,帮助学生在自主探索和合作交流中真正理解掌握规律,使学生在探索数学运算规律方面不断积累经验并进一步提高他们的探索意识和能力。但反思这一节课也发现了一些问题:学生在初次使用自己的语言描述加法结合律时,表达得不够严谨,教师没有及时补救这种生成问题,将自己的想法强加给学生,在无形中缩小了学生探索的空间,在今后的教学中应努力改正。
教学目标:
1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。
2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。
3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重难点:
理解并掌握运算律,并进行运算。
教学方法:
主动探索法
教学用具:
挂图、卡片
教学过程:
一、情景导入
1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)
2、出示情景图,仔细看图,读懂图中的信息。
(1) 同桌间说信息,提加法问题。
(2) 展示学习成果(师相机贴出问题卡)
(3) 教师小结进入课题并板书:加法运算律
二、探索加法交换律
1、解决问题“跳绳的有多少人?”
(1) 学生自练,展示学习成果。(指两名用不同方法计算的同学展示)
(2) 说说自己的发现。(同桌交流,展示)
(3) 师小结并板书28+17=17+28
(4) 让学生举例(自练)展示教师相机板书
2、讨论交流:
A每组中的两个算式的异同。
B这几组算式是不是都具有这样的特点?
C说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)
D用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)
E a+b=b+a(说说字母各表示什么?)
3、练习
357+218(计算并验算)
三、探索加法结合律
(1) 出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法
计算的同学上台板演)
(2) 让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)
交流自己的发现
(3) 出示两组算式,观察并探索其中的`规律。
用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。
四、巩固理解运算律
卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)
五、总结提高
1、这节课我们学习了加法的哪两个运算律?说说自己的收获。
2、教师小结:
加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。
六、布置作业
完成课后未完成的题目 板书
运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
设计说明
1.在不断的设疑中启发学生思考、自主探究、发现规律。
问题是数学学习的根本,通过不断地设置问题,引导学生思考,使学生在比较中感知加法结合律的意义。接着通过验证、猜想,使学生发现加法结合律,并会用字母表示。
2.注重发挥学生的主体地位,加深对知识的理解。
《数学课程标准》指出:学生是数学学习活动的主体。本设计在探索的过程中引导学生通过观察、思考、抽象、概括、交流等活动,经历探究加法结合律的过程,初步感受应用加法结合律可以使计算简便,把学习的主动权交给学生,并在师生互动和生生互动中加深学生对新知的理解和应用,使学生真正体会到数学知识的价值所在。
课前准备
PPT课件
教学过程
⊙形成疑问,提出问题
1.观察、讨论。
师:这里有两组算式,在○里填上适当的符号。
(4+8)+6○4+(8+6)
(19+82)+38○19+(82+38)
师:观察这两组算式,它们有什么相同的地方?
(学生在小组内讨论,相互说出自己的发现)
2.交流发现。
师:通过讨论,你发现了什么?(学生汇报)
教师引导:
(1)几个数相加?(三个,且加数相同)
(2)分别先算了什么?(前两个数,后两个数)
(3)结果如何?(得数相同)
3.提出猜想。
师:根据刚才的发现,请你猜想一下,加法中除了交换律外,可能还存在什么样的规律?
(学生猜想:三个数相加,先把前两个数相加,再加上第三个数与先把后两个数相加,再加上第一个数所得的和是相等的)
设计意图:学生通过计算给出的算式,发现两个算式的相同之处和不同之处,自觉地产生探索的欲望。
⊙验证猜想,总结规律
1.验证猜想。
(1)仿写算式,验证猜想。
学生仿写算式,小组内交流,全班汇报。
(2)举例验证。
利用生活中的事例验证自己的猜想。
学生自由举例,小组内交流结果。
2.明确加法结合律。
三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再加上第一个数,所得的`和是相等的,这就是加法结合律。
3.用字母表示加法结合律。
师:用语言来叙述加法结合律很不方便,能不能用简单的方法表示出加法结合律呢?
如果用字母a、b、c分别表示三个加数,那么加法结合律应该怎样表示呢?
(a+b)+c=a+(b+c)
4.加法结合律的应用。
(1)感知简便的计算方法。
师:怎样应用加法结合律呢?下面我们就来试一试。
课件出示练习:
根据运算律在下面的□里填上适当的数。
(25+68)+32=25+(□+□)
130+(70+4)=(130+□)+□
64+37+163=64+(□+□)
(指名回答)
师:这三个等式都是根据哪个运算律填写的?(学生讨论后汇报)
师小结:应用加法结合律有时可以使一些计算简便。